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Abstract—State-of-the-art algorithms for blind image quality
assessment (BIQA) typically have two categories. The first cate-
gory utilizes handcrafted natural scene statistics (NSS) derived
from the statistical regularity of natural images. The second
category utilizes codebook-based features which are obtained
by feature encoding over a learned codebook. However, several
problems need to be addressed in existing codebook-based BIQA
methods. First, the high-dimensional codebook-based features are
memory-consuming and have the risk of over-fitting. Second,
there is a semantic gap between the constructed codebook
by unsupervised learning and image quality. To address these
problems, we propose a novel codebook-based BIQA method
by optimizing multi-stage discriminative dictionaries (MSDDs).
To be specific, MSDDs are learned by performing the label
consistent K-SVD (LC-KSVD) algorithm in a stage-by-stage
manner. For each stage, a new quality consistency constraint
called “quality-discriminative regularization” term is introduced
and incorporated into the reconstruction error term to form a
unified objective function which can be effectively solved by LC-
KSVD for discriminative dictionary learning. Then, the latter
stage takes the reconstruction residual data in the former stage
as input based on which LC-KSVD is repeatedly performed until
the final stage is reached. Once the MSDDs are learned, multi-
stage feature encoding (MSFE) is performed to extract feature
codes. Finally, the feature codes are concatenated across all stages
and aggregated over the entire image for quality prediction via
regression. The proposed method has been evaluated on five
databases and experimental results well confirm its superiority
over existing relevant BIQA methods.

Index Terms—Blind image quality assessment, multi-stage
discriminative dictionaries, multi-stage feature encoding, label
consistent K-SVD, reconstruction residual.

I. INTRODUCTION

Manuscript received March 7, 2016; revised June 26, 2017 and September
2, 2017; accepted October 1, 2017. This work was supported in part by
the Natural Science Foundation of China (61622109), in part by the Zhe-
jiang Natural Science Foundation (R18F010008), and the China Scholarship
Council (201708330302). It is also sponsored by the K.C. Wong Magna
Fund in Ningbo University. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Judith Redi.
(Corresponding author: Feng Shao.)

Q. Jiang is with the Faculty of Information Science and Engineering,
Ningbo University, Ningbo 315211, China, and also with the School of Com-
puter Science and Engineering, Nanyang Technological University, Singapore
639798 (e-mail: jqp910707@126.com).

F. Shao and G. Jiang are with the Faculty of Information Sci-
ence and Engineering, Ningbo University, Ningbo 315211, China (e-mail:
shaofeng@nbu.edu.cn; jianggangyi@nbu.edu.cn).

W. Lin is with the School of Computer Science and Engineering, Nanyang
Technological University, Singapore 639798 (e-mail: wslin@ntu.edu.sg).

K. Gu is with the Beijing Key Laboratory of Computational Intelligence
and Intelligent System, Faculty of Information Technology, Beijing University
of Technology, Beijing 100124, China (e-mail: guke@bjut.edu.cn).

H. Sun is with the Mitsubishi Electric Research Laboratories (MERL),
Cambridge, MA 02139 USA (e-mail: hsun@merl.com).

V ISUAL data, especially in the form of digital images,
has become omnipresent in this digital media era. There

is a saying that one high-quality image is worth thousands
of words. While it is true, it needs to be aware that digital
images are likely to undergo a variety of distortions during
the process chain from capture to display [1], [2]. Therefore,
quantifying the impacts of distortions on image quality in a
perceptually consistent way is important. The development in
this direction will advance a wide range of applications, such
as video coding [3], [4], [5], image restoration [6], image
compression [7], etc.

Image quality assessment (IQA) metrics can be classi-
fied into full-reference (FR), reduced-reference (RR), and
no-reference (NR) categories [8]. For FR-IQA metrics, the
original images are fully available. Many effective FR-IQA
metrics, including SSIM [9], MAD [10], ADM [11], GSM
[12], FSIM [13], SFF [14], VSI [15], and GMSD [16], have
been proposed. Owing to the full participation of original
images, FR-IQA metrics have achieved high consistency with
human subjective judgment results. Different from FR metrics,
RR-IQA metrics [17], [18], [19], [20] only utilize partial
original features for quality evaluation. As much less original
information is involved, RR-IQA metrics are more efficient
and practically applicable. However, in the case where the
original image is unavailable, NR-IQA/blind IQA (BIQA)
metrics would be the only possible solution. Note that, besides
the conventional camera captured images, IQA algorithms for
other images, such as stereoscopic image [21], [22], retargeted
image [23], screen content image [24], and tone mapped image
[25], [26], have also been investigated.

The initial efforts on BIQA mainly focus on specific distor-
tion types, including blurriness [27], blockiness [28], and ring-
ing artifacts [29]. The design of such distortion-specific BIQA
models largely depends on domain knowledge of each specific
distortion characteristics. Although satisfactory performance
has been achieved, the universality of these methods is limited.
To tackle this problem, BIQA is further developed to handle
diverse distortions, known as the general-purpose BIQA. Much
progress has been made in the areas related to general-purpose
BIQA in recent years. According to the dependency of human
opinion scores for the design of quality prediction models,
state-of-the-art BIQA methods can be roughly classified as
distance-based and learning-based.

The distance-based BIQA methods do not require human
opinion scores to calibrate a quality model. They measure the
image quality by the distance between the statistical models
built upon pristine image sets and a testing distorted image.



1520-9210 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2017.2763321, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 2

Generally, these methods like [30], [31], [32] share a similar
architecture. First, perceptually relevant features are extracted
from pristine images and used to build a pristine statistical
model. Then, the corresponding features are also extracted
from a testing distorted image to build a distorted statistical
model. Finally, the quality of this testing distorted image is
estimated by the distance between the built two statistical
models. In [30], the Natural Image Quality Evaluator (NIQE)
extracts a set of local features and fits the feature vectors to
a global multivariate Gaussian (MVG) model. Recently, the
NIQE model is further extended to Integrated Local NIQE
(IL-NIQE) [31] by enriching the quality-aware features and
integrating the local and global MVG models together.

The learning-based BIQA methods require a set of distorted
images with corresponding subjective scores to learn a quality
model. The determinant factor leading to the success of
learning-based BIQA methods is to extract highly versatile
quality-aware features that are sensitive to a broad range of im-
age distortion types while robust to image content variations.
Broadly, there are two types of quality-aware features: natural
scene statistic (NSS)-based and codebook-based. The NSS-
based features are derived based on the assumption that natural
images potentially possess certain regular statistical properties
while the presence of distortions will inevitably change them.
Many NSS-based methods in wavelet domain [33], DCT
domain [34], spatial domain [35], and hybrid domain [36]
have been proposed. Other works are also included in [37],
[38], [39], [40].

In sharp contrast to the handcrafted NSS-based features,
codebook-based features are obtained by feature encoding with
respect to a codebook learned from raw patches. Generally,
codebook-based features require less domain knowledge and
are potentially generalizable across different image types [43].
The Bag-of-Words (BoW) model [45], which has been widely
used in image classification [46], has also been adapted for
BIQA [41], [42], [43], [44]. Given that BIQA is essentially a
typical regression problem, the application of BoW to BIQA
is intuitive. Typical codebook-based BIQA methods, including
CBIQ [41], CORNIA [42], HOSA [43], and QAF [44], shares
a similar architecture, i.e., local feature extraction, codebook
construction, feature encoding, spatial pooling, and quality
regression. With codebook-based feature representation, these
methods have shown advantages in assessing both natural
scene and screen content images [43].

It is worth noting that previous codebook-based methods
[41], [42], [43], [44] usually require a large-size codebook
to extract high-dimensional features, which are memory-
consuming and have the risk of over-fitting. Additionally,
codebooks used in previous methods are constructed by un-
supervised learning, i.e., the quality information of training
samples is not utilized during codebook optimization. Thus,
the constructed codebooks may be suboptimal for BIQA.
We interpret these two aspects of problems are related to
some extent. On the one hand, due to the lack consideration
of quality information of training samples during codebook
optimization, it is difficult to produce highly discriminative
feature codes with respect to a single small-size codebook
because the codebook is not exclusively optimized to be

quality-aware. Moreover, feature encoding over a single small-
size codebook would inevitably cause large information loss
and reconstruction error. On the other hand, by including
sufficient (probably redundant) codewords in the codebook,
a competitive performance still can be achieved by machine
learning-based regression. From the above analyses, it is intu-
itive that optimizing discriminative (quality-aware) codebook
for feature encoding and making use of the reconstruction
residual data will facilitate the construction of codebook-based
BIQA methods with a much smaller-size codebook.

This paper proposes a novel codebook-based BIQA method
from the perspective of optimizing multi-stage discriminative
dictionaries (MSDDs) for feature encoding to extract more
compact and discriminative quality-aware features. To be
specific, MSDDs are learned from a set of contrast normalized
patches by performing label consistent K-SVD (LC-KSVD)
[47] in a stage-by-stage manner. During each stage, a new
quality consistency constraint called “quality-discriminative
regularization” term is introduced and incorporated into the
reconstruction error term to form a unified objective function
which can be effectively solved by LC-KSVD. Then, the latter
stage takes the reconstruction residual data in the former stage
as input based on which LC-KSVD is repeatedly performed
until the final stage is reached. Once the MSDDs are learned,
multi-stage feature encoding (MSFE) is performed to extract
feature codes. Finally, the feature codes are concatenated
across all stages and aggregated over the entire image for
quality prediction via support vector regression (SVR) [48].
Compared with the existing codebook-based BIQA methods,
the proposed method extracts much lower dimensional features
for quality evaluation while achieving comparable or even
better performance.

The main advantages of our proposed method are two-fold.
The first one is the high efficacy. Instead of performing feature
encoding over a single large-size reconstructive codebook,
MSDDs are learned by applying LC-KSVD in a stage-by-
stage manner for MSFE to extract more compact and discrim-
inative quality-aware features, thus the prediction accuracy is
improved. The extracted features are shown to be applicable
to natural images (degraded with single distortion type and
multiple distortion types) and screen content images while
the leading NSS-based model (e.g., GM-LOG [37]) can only
effectively evaluate the natural images degraded with single
distortion type as demonstrated by the experiments in Section
IV. It should be emphasized that the proposed method is most
suitable to evaluate the images degraded with some common-
ly encountered distortions such as JPEG2000 Compression
(JP2K), JPEG Compression (JPEG), Gaussian White Noise
(WN), Gaussian Blur (GB) and Fast Fading (FF). While for
luminance change and color/contrast distortions, our method
is still unable to deliver satisfactory results. However, given
that these distortions are the primary challenge of state-of-the-
art universal blind quality metrics, a slight performance boost
on these distortions (as demonstrated by the experiments on
the entire TID2013 database [49], see Section IV-E) achieved
by our method is still acceptable. All these failed cases could
lead us to develop more robust and universal BIQA models
in the future by learning more comprehensive quality-aware
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features. The second one is the high efficiency. The efficiency
of an algorithm typically involves two factors: computational
complexity and occupied memory. Compared to the existing
codebook-based methods, much lower dimensional features
are extracted in our method. Thus, our proposed method is
more memory-saving, leading to high efficiency. The reduction
in feature dimension is meaningful for the systems where
the memory sources are limited. Although the computational
complexity of our method is slightly higher than HOSA [43]
which actually represents the state-of-the-art codebook-based
BIQA method, the running time of MSDD is still satisfied and
has the potential to be used in real-time applications (about
1.6 seconds for a 720× 480 image).

The important message delivered by this paper is that,
we demonstrate the feasibility to learn quality-aware features
with respect to much smaller-size codebooks while achieving
comparable or even better performance. This can be achieved
by the following joint efforts: leveraging the quality label
of training data as constraints during codebook optimization
and making use of the reconstruction residuals in a stage-by-
stage manner. The rest of this paper is organized as follows.
Section II introduces the related works. Section III illustrates
the proposed method with details. Experimental results are
presented and analyzed in Section IV. Finally, Section V
concludes the paper.

II. RELATED WORK

A. Bag-of-Words (BoW) Model

The BoW model has been widely used for feature repre-
sentation in image classification [46]. Given a query image,
the basic idea of BoW is to quantize each local feature
descriptor of this image into the nearest visual word in a
codebook, and then represent the image by a histogram of
the visual words (i.e., the histogram reflects the distribution
of occurred visual words). Finally, the obtained image-level
feature vector can be used for classification. Although BoW
has undergone significant changes over the past years, it still
can be summarized as follows:

Step-1) Codebook generation: First, local feature descriptors
are extracted from training images. Next, a visual codebook is
learned by seeking a set of representative visual words from
the input descriptors. A widely-used method is to perform K-
means clustering [50]. Visual words are then defined as the
learned clustering centers.

Step-2) Feature encoding: Feature encoding is then per-
formed by embedding local descriptors into the codebook
space. This results in so-called feature codes which express
each descriptor by a subset of visual words.

Step-3) Spatial pooling: A spatial pooling step involves
transforming all the feature codes of an image into a final
image-level feature vector called image signature. Finally,
training and classification can be performed on the signatures
by a discriminative classifier.

Mathematically, the general BoW framework can be formu-
lated as follows

xl = [xl,1, xl,2, · · · , xl,m]T = f(yl,D), ∀l ∈ L, (1)

f̂ = [f1, f2, · · · , fm]T , fm = g
(
{xl,m}l∈L

)
, (2)

f = f̂/‖f̂‖2, (3)

where yl ∈ Rd is an input d-dimensional local feature
descriptor to be encoded, D = [d1, d2, · · · ,dm] ∈ Rd×m
represents the codebook, and m is the codebook size. First, a
mapping function f : Rd → Rm in Eq. (1) embeds yl into
the codebook space resulting in corresponding feature code
xl ∈ Rm. Then, spatial pooling operation g : Rm×L → Rm
in Eq. (2) aggregates the occurrences of visual words over the
entire image: it uses all coefficients xl,m associated with visual
word dm to obtain the m-th coefficient in vector f̂ ∈ Rm.
Finally, the signature vector f̂ is normalized in Eq. (3) and the
normalized vector representation is fed into a discriminative
classifier for classification. Note that the above formulations
do not include the codebook generation step as the codebook
D can be constructed by any dictionary learning methods, such
as K-means [50] and K-SVD [51].

B. Previous Codebook-based BIQA Methods

The existing codebook-based BIQA methods, including
CBIQ [41], CORNIA [42], HOSA [43], and QAF [44].
commonly contain the same components, i.e., local feature
extraction, codebook construction, feature encoding, spatial
pooling, and quality regression, as depicted in Fig. 1. The
codebook construction step is performed off-line. Once a
certain codebook is prepared, it will be kept fixed and served
as the target feature space over which the feature encoding is
implemented. The existing relevant works listed above differ in
one or several components with each other. A brief summary
of these methods with emphasizing their differences is pre-
sented in Table I. In addition, we also add the characteristics
of the proposed method here for a better comparison.

The CBIQ method extracts Gabor filter responses from local
patches to formulate codebook using K-means and predicts
image quality with corresponding codewords occurrence his-
togram as quality-aware features. Then, SVR is used to learn a
quality model that maps such feature vectors to quality scores.
However, the size of the built codebook in CBIQ is extremely
large, nearly 10K codewords. Later, the same authors extend
CBIQ to CORNIA with an unsupervised feature learning
method by taking raw image patches as input. With a codebook
of length 10K, it obtains considerably performance boost
against CBIQ. But when only hundreds of codewords are
contained, the performance of CORNIA deteriorates severely.
To reduce the codebook size with performance stability, they
further design a supervised filter learning (SFL) approach [52]
with stochastic gradient descent to optimize a 100-codeword
codebook. The performance is acceptable but still inferior to
CORNIA. With similar consideration, the quality-aware filter
(QAF) method extracts a set of local descriptors from patches
to learn a 10K-codeword QAF dictionary using sparse filtering.
Another difference between QAF and other codebook-based
BIQA models is that random forest (RF) algorithm [53] is used
rather than SVR for quality regression. More recently, Xu et
al. proposed a novel BIQA method called high order statistic
aggregation (HOSA). In HOSA, codebook is also learned by
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Fig. 1. General framework of the existing codebook-based BIQA methods. The framework mainly contains five components: local feature extraction, codebook
construction, feature encoding, spatial pooling, and quality regression. Note that the the codebook construction step is performed offline.

TABLE I
STATE-OF-THE-ART CODEBOOK-BASED BIQA METHODS

Method Local feature extraction Codebook construction Feature encoding Spatial pooling Regression
CBIQ [41] Gabor filter responses K-means clustering Hard assignment Average pooling SVR

CORNIA [42] Contrast normalized patches K-means clustering Soft assignment Max pooling SVR
HOSA [43] Contrast normalized patches K-means clustering High order statistics Power normalization SVR
QAF [44] MSCN and Gabor coefficients Filter dictionary learning Sparse filtering Max pooling RF

MSDD (Pro.) Contrast normalized patches Multi-stage discriminative dictionary learning Multi-stage feature encoding Average pooling SVR

K-means clustering. The main difference between HOSA and
the previous relevant ones lies in that, in addition to the
mean of each cluster, the dimension-wise variance and skew
of clusters are also calculated to form a more comprehensive
codebook for feature encoding. With soft-weighted high order
statistics difference computation, the final feature dimension
in HOSA still reaches to 14.7K.

Overall, the previous codebook-based BIQA methods al-
ways extract extremely high-dimensional features for quality
prediction, while such high-dimensional features are memory-
consuming and have the risk of over-fitting because the
image numbers in the existing IQA databases are relatively
small as compared to the involved feature dimensionalities.
Additionally, all the codebooks in the previous codebook-
based BIQA methods are constructed by unsupervised learning
algorithms (typically K-means clustering) where the quality
information of training samples is not utilized as constraints
during codebook optimization. That is, there actually exists
a semantic gap between the constructed codebook and BIQA.
With such codebook, it is difficult to extract highly discrimina-
tive features when the codebook size becomes small because
the associated feature discriminability also decreases in this
case. This intuitively motivates us to incorporate the quality
information of training samples as supervised information
into the codebook construction process to optimize a more
discriminative codebook for BIQA.

III. PROPOSED METHOD

The diagram of our proposed method is shown in Fig. 2.
Overall, the method involves two phases: 1) off-line MSDD
learning (MSDDL) and 2) online quality prediction based on
MSFE. The first phase, i.e., MSDDL, is implemented off-line
and will end when the MSDDs are available. That is, given a
testing image, only the second phase is involved. For a certain
testing image, after patch partition and contrast normalization
processes, the corresponding quality-aware features of each
patch can be obtained by MSFE with respect to the learned
MSDDs. Then, quality-aware feature codes of each patch are
aggregated over the entire image for quality regression using

SVR. In essence, the main difference between our proposed
method and the previously relevant ones is that that we
propose to perform MSFE with respect to multiple cascade and
relatively small-size codebooks called MSDDs instead of the
traditional single large-size codebook to extract more compact
yet discriminative quality-aware features for BIQA.

A. Multi-Stage Discriminative Dictionary Learning (MSDDL)

As revisited, previous codebook-based BIQA methods ex-
tract quality-aware features with respect to a single large-
size codebook which are typically constructed by unsuper-
vised learning algorithms. In our method, inspired by the
motivations of supervised dictionary learning, we propose to
incorporate the quality information of local image patches
into the traditional dictionary learning frameworks to opti-
mize discriminative dictionary for more compact and effective
feature encoding. In addition, this discriminative dictionary
learning process is repeated stage-by-stage by further utiliz-
ing the reconstruction residual data in each stage until the
final stage is reached. We refer to this process as MSDDL
hereinafter. Note that the MSDDL is performed off-line. Once
the MSDDs are learned, they are kept fixed and served as
the target feature space for feature encoding. Given that the
optimization of MSDDs requires a set of local patches as
well as their corresponding local quality scores as input, an
image gallery containing pristine images and their associated
distorted images is collected in advance (will be introduced in
Section IV-B). Note that the pristine images are also required
for local quality estimation using FR-IQA metrics.

1) Contrast Normalization: For each image in the collected
image gallery, we convert it into grayscale from which a set
of non-overlapping Bs × Bs image patches pi having rich
structures and details are sampled. For each patch pi, the
following contrast normalization is performed

yi =
lumi − µi
σi + 10

, (4)

where yi ∈ Rd (d = Bs × Bs), µi, and σi respective are the
contrast normalized patch vector, the mean and the standard
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Fig. 2. Framework of the proposed MSDD-based BIQA method. Compared to the previous codebook-based BIQA methods, the main differences of our
proposed method lie in codebook construction and feature encoding steps. Specifically, 1) for codebook construction, MSDDL is proposed to replace the
traditional unsupervised learning algorithms (e.g., K-means [50] and K-SVD [51]); 2) for feature encoding, MSFE is performed to extract multi-stage feature
codes. The feature codes are concatenated across all stages and aggregated over the entire image for quality regression.

deviation of pi. Note that lumi ∈ Rd is a vector of intensity
values in pi. In addition, we also perform ZCA whitening to
further remove the correlations among local features [54].

2) Local Quality Identification: This step focuses on es-
timating the quality of each local patch sampled from the
image gallery. Recently, many advanced FR quality metrics
have shown high consistency with subjective perception, and
more importantly, these FR-IQA metrics enable generating
pixel-unit quality map. By this consideration, we use the
FSIM metric [13] to measure the quality of each local patch.
Formally, the FSIM score of pi is computed by

si =
1

Bs ×Bs

∑
(x,y)∈pi

MFSIMc
(x, y), (5)

where MFSIMc(x, y) represents the FSIM score of pixel (x, y)
in pi (with a size of Bs ×Bs), and si ∈ [0, 1] represents the
patch-level quality score of pi, where a higher value of si
indicates a better quality. In Eq. (5), the pixel-unit FSIM score
MFSIMc

(x, y) is computed as follows [55]

MFSIMc (x, y) =
SPC(x, y) · SG(x, y) · (SC(x, y))λ · PC∆(x, y)

(1/H ×W ) ·
∑H
x=1

∑W
y=1 PC∆(x, y)

,

(6)
where SPC(x, y), SG(x, y), and SC(x, y) respectively denote
the quality scores of pixel (x, y) in terms of phase congruency
similarity, gradient magnitude similarity, and color information
similarity, between the distorted (d) and pristine (o) versions.
PC∆(x, y) = max(PCo(x, y), PCd(x, y)) is a pixel-unit
weighting map for spatial pooling. PCo and PCd are the
distorted (d) and pristine (o) phase congruency maps. H and
W are the height and width of images. λ is a constant used
to adjust the importance of the chromatic components and is
set to 0.03 in the default implementation of FSIM in [13].
For brevity, we omit the detailed formulation of SPC(x, y),
SG(x, y), and SC(x, y).

3) Proposed MSDDL Algorithm: Codebook construction
plays a vital role in codebook-based BIQA methods. General-
ly, the performance accuracy largely depends on the discrimi-
native property of the derived feature codes [56]. It is always
true that a better performance will be achieved if providing
a much more discriminative codebook for feature encoding.
In the literature, many dictionary learning algorithms in un-
supervised or supervised manners have been proposed. The
first category, unsupervised dictionary learning methods, such

TABLE II
IMPORTANT NOTATIONS AND DEFINITIONS

Notations Definitions
P the local image patch set
Y the contrast normalized patch matrix
Q the quality-discriminative code matrix
D̂ the learned dictionary
X̂ the estimated sparse code
Â the learned linear transformation matrix
E the reconstruction residual matrix
ck the k-th subset
K the number of subsets
T the sparsity level
M the dictionary size
N the number of stages

as K-means clustering [50] and K-SVD [51], are designed
to optimize a codebook for reconstruction purpose instead of
classification purpose. That is, codebooks learned via unsu-
pervised learning are not enforced to be discriminative and
thus may be suboptimal for classification tasks. By contrast,
the second category, i.e., supervised dictionary learning [47],
[57], [58], which additionally utilizes the class information of
training samples as constraints during dictionary optimization,
can offer better solutions to learn dictionaries that are both
reconstructive and discriminative and therefore improve the
classification accuracy. In view of the competitive performance
of the LC-KSVD algorithm [47] in a wide range of classifi-
cation problems, we utilize LC-KSVD as the basic algorithm
unit to design our proposed MSDDL method.

Before illustrating the MSDDL algorithm, a summary of
some involved notations and definitions are first listed in Table
II. Considering all the local patches P = {pi} extracted
from the image gallery, LC-KSVD is performed by taking
Y = {yi} and Q = {qi} as input, where yi ∈ Rd and
qi ∈ RM represent the contrast normalized patch vector and
quality-discriminative code of pi, respectively. Obviously, how
to generate the quality-discriminative codes Q = {qi} is
crucial. First, Y = {yi} is grouped into K subsets by

ck =

{
yi|

k − 1

K
< si ≤

k

K
, k = 1, 2, · · · , K

}
, (7)

where ck denotes the k-th (k = 1, 2, · · · ,K) grouped subset
of Y. According to Eq. (7), each yi is enforced to be
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associated with one specific subset ck. Note that si is the
estimated quality score of pi. Then, for each yi that is grouped
into ck, its corresponding quality-discriminative code qi is
determined as follows

qi =

0, 0, · · · , 0︸ ︷︷ ︸
(M/K)→c1

, · · · , 1, 1, · · · , 1︸ ︷︷ ︸
(M/K)→ck

, · · · , 0, 0, · · · , 0︸ ︷︷ ︸
(M/K)→cK

 ∈ RM

(8)
That is, for each yi, its corresponding quality-discriminative

code qi only has (M/K) non-zero entities, where M is the
dictionary size and K is the number of grouped subsets. We
set K = 10 in our implementation.

By taking Y and Q as input, the optimization of LC-KSVD
can be expressed as〈

D̂, Â, X̂
〉
= argmin

D,A,X
‖Y −DX‖2F + α ‖Q−AX‖2F ,

s. t. ∀i, ‖xi‖0 ≤ T,
(9)

where α is defined to control the relative contribution between
reconstruction error and quality-discriminative regularization
terms. D̂ = [d1, d2, · · · ,dM ] ∈ Rd×M is the learned dictio-
nary (with M atoms) over which Y = [y1, y2, · · · ,yNp ] ∈
Rd×Np can have sparse codes X = [x1, x2, · · · ,xNp ] ∈
RM×Np , Â = [a1, a2, · · · ,aM ] ∈ RM×M is a linear trans-
formation matrix which transforms the original sparse codes
X to be most discriminative in the sparse feature space RM ,
T is a constant specifying the sparsity level, ‖xi‖0 counts the
non-zeros elements in xi. Owning to the joint consideration of
reconstruction error and quality-discriminative regularization,
a dictionary that is both reconstructive and discriminative can
be learned by optimizing Eq. (9).

As for the purpose of optimization, the objective function
defined in Eq. (9) can be rewritten as〈

D̂, Â, X̂
〉
= argmin

D,A,X

∥∥∥∥ ( Y√
αQ

)
−
(

D√
αA

)
X

∥∥∥∥2

F

,

s. t. ∀i, ‖xi‖0 ≤ T,
(10)

Let Ynew = (YT ,
√
αQT )T , Dnew = (DT ,

√
αAT )T .

Note that Dnew is `2 normalized column-wise. Thus, the
optimization of Eq. (10) is equivalent to solve the following
problem〈

D̂new, X̂
〉
= argmin

Dnew,X
‖ Ynew −DnewX ‖2F ,

s. t. ∀i, ‖xi‖0 ≤ T,
(11)

which is exactly the problem that standard K-SVD [51] solves.
To solve this problem with K-SVD, both D and A need to
be initialized as D0 and A0, respectively. Due to the space
limit, we omit the initialization process here. The details can
be found in [47]. Finally, we get D̂new and X̂ by solving
Eq. (11) using K-SVD. From D̂new, we can further obtain
D̂ = [d1, d2, ... ,dM ] and Â = [a1, a2, · · · ,aM ]. However,
they cannot be directly used for testing because D̂ and Â are
jointly normalized in D̂new during LC-KSVD optimization,
i.e., ∀m, ||dTm,

√
αaTm||22 = 1. The desired dictionaries D̂∗

and Â∗ can be computed as

D̂∗ =

[
d1

‖d1‖2
,

d2

‖d2‖2
, . . . ,

dM
‖dM‖2

]
, (12)

Â∗ =

[
a1

‖a1‖2
,

a2

‖a2‖2
, . . . ,

aM
‖aM‖2

]
. (13)

Based on the desired dictionary D̂∗ and the sparse codes
X, the residual matrix E of reconstructing Y is given by

E = Y − D̂∗X. (14)

To make use of the reconstruction residuals, our proposed
MSDDL method applies LC-KSVD repeatedly to optimize
N -stage discriminative dictionaries {D̂∗1, D̂∗2, · · · , D̂∗N}. The
optimization of LC-KSVD in the (n+1)-th stage begins only
when the n-th stage ends. Once the optimization of LC-KSVD
in the n-th stage is finished, the generated dictionary D̂∗n is
stored while the reconstruction residual matrix En is passed
into the (n + 1)-th stage as inputs based on which a new
round of LC-KSVD optimization is performed. This kind of
iteration stops until the final stage is reached. To facilitate
understanding, we summarize the pseudo-code of our proposed
MSDDL method in Algorithm 1.

Algorithm 1 Multi-stage discriminative dictionary learning.
Input: Y; Q; α; T ; M ; N ;
Output: D̂∗ = {D̂∗

1, D̂
∗
2, · · · , D̂∗

N};
1: initialize Y1 = Y;
2: for each n ∈ [1, N ] do
3: do LC-KSVD [47] on Yn according to Eq. (9);
4: output the n-th stage dictionary D̂∗

n and the sparse code Xn;
5: compute the residual matrix En according to Eq. (14);
6: pass En to the next stage as input: Yn+1 = En;
7: end for
8: concatenate the dictionaries in all stages: D̂∗ = {D̂∗

1, D̂
∗
2, · · · , D̂∗

N}.

B. Multi-Stage Feature Encoding (MSFE)-Based BIQA

Feature encoding can be understood as an activation func-
tion for the learned dictionary. By feature encoding, new
feature representations can be obtained with the transformation
from original feature space to the target dictionary space;
the associated activities of atoms are the resultant feature
codes. Given the learned MSDDs, feature encoding is also
performed in a stage-by-stage manner. Therefore, the feature
encoding process is referred to as MSFE in this paper. For an
arbitrary local patch p extracted from the testing image, we
first compute its contrast normalized patch vector y according
to Eq. (4). By taking y as input, the MSFE operates as follows.
On the one hand, the sparse codes x of feature y over the
pre-learned MSDDs is estimated in each stage. On the other
hand, reconstruction residual vector in the current stage is
computed and passed to the next stage. Given a set of N -stage
dictionaries {D̂∗1, D̂∗2, · · · , D̂∗N}, for each yn ∈ Rd as inputs
in the n-th stage, its corresponding sparse code xn ∈ RM
over D̂∗n and reconstruction residual en ∈ Rd are respectively
calculated as follows

xn = argmin
xn

∥∥∥yn − D̂∗nxn

∥∥∥2

F
, s. t. ‖xn‖0 ≤ T, (15)
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Algorithm 2 Multi-stage feature encoding.
Input: D̂∗ = {D̂∗

1, D̂
∗
2, · · · , D̂∗

N}; y;
Output: x = [x1, x2, · · · , xN ];
1: initialize y1 = y;
2: for each n ∈ [1, N ] do
3: do sparse coding [59] on yn according to Eq. (15);
4: output the sparse code xn;
5: compute the residual vector en according to Eq. (16);
6: pass en to the next stage as input: yn+1 = en;
7: end for
8: concatenate the sparse codes in all stages: x = [x1, x2, · · · , xN ].

en = yn − D̂∗n · xn, (16)

To solve Eq. (15), we resort to the batch-OMP algorithm
[59] to obtain the optimal solution. Once the sparse code
xn and the reconstruction residual en are estimated at the
current stage, en is passed to the next stage, i.e., yn+1 = en.
Afterwards, the steps in Eq. (15) and (16) are iteratively
performed until the final stage is reached. Finally, the ob-
tained sparse code vectors {x1,x2, · · · ,xN} in all stages are
concatenated, yielding the final feature code to represent y,
i.e., y ∈ Rd → x = [x1,x2, · · · ,xN ]T ∈ R(M×N)×1, where
N is the number of stages and M is the number of atoms
in each single-stage dictionary. The pseudo-code of MSFE is
summarized in Algorithm 2.

It is worthy emphasizing that the final feature code comes
from multi-stage sparse code vectors over MSDDs which are
enforced to be both reconstructive and discriminative with the
help of multi-stage LC-KSVD optimization. On the one hand,
such kind of dictionary could enable better discriminability
of the estimated sparse codes for quality prediction. On the
other hand, the multi-stage framework could make use of the
reconstruction residuals which also provide complementary
benefits for characterizing image quality.

C. Spatial Pooling
The feature codes of all the local patches extracted from

a testing image should be aggregated to get a final image-
level feature vector convenient for quality regression. We
resort to the simple average-pooling for the sake of high
efficiency. The benefits of other advanced pooling strategies
can be further exploited [60]. To be more specific, given a
testing image, we similarly partition it into non-overlapped
patches {p1,p2, · · · ,pL} and compute the corresponding
contrast normalized patch vectors {y1,y2, · · · ,yL} according
to Eq. (4). Then, following the MSFE process described in
Algorithm 2, the associated patch-level feature codes of this
image are obtained, as denoted by {x1,x2, · · · ,xL} where
xl = [xl1, x

l
2, · · · , xlM×N ]T ∈ R(M×N)×1, l = 1, 2, · · · , L.

Finally, the average-pooling is expressed as

fi =
1

L

∑L

l=1
xli, i = 1, 2, · · · , (M ×N), (17)

where f = [f1, f2, · · · , fM×N ] represents the final image-level
quality-aware feature vector.

D. Quality Regression
After feature extraction, the quality evaluation is achieved

using SVR to create a fair comparison with state-of-the-art

BIQA methods. Specifically, a SVR model is first learned
using a set of training images. Then the trained SVR model
is used to evaluate the quality of testing images. We utilize
the LIBSVM package [48] to implement the SVR with radial
basis function (RBF) as the kernel.

IV. EXPERIMENTAL RESULTS

A. Evaluation Protocols

The experiments are conducted on five databases: LIVE
[61], CSIQ [10], TID2013 [49], LIVEMD [62], and SIQAD
[63]. Following protocols in CBIQ [41], CORNIA [42], and
HOSA [43], all five distortion types in LIVE (i.e., JP2K,
JPEG, WN, GB, and FF) are considered in the experiments,
while for CSIQ, TID2013, and SIQAD, only the common four
distortion types appeared in LIVE (i.e., JP2K, JPEG, WN and
GB) are considered. Given that the proposed method belongs
to the codebook-based category, we compare it with three
codebook-based BIQA methods, i.e., CBIQ [41], CORNIA
[42], and HOSA [43]. In addition, several representative
handcrafted NSS eature-based BIQA methods, i.e., DIIVINE
[33], BLIINDS-II [34], BRISQUE [35], GM-LOG [37], and
NFREM [38], are also included for comparison.

Three commonly-used criteria, i.e., Spearmans rank order
correlation coefficient (SROCC) which measures the pre-
diction monotonicity, Pearsons linear correlation coefficient
(PLCC) which measures the prediction accuracy, and root
mean squared error (RMSE) which measures the prediction
error, are used to evaluate the performance. A good BIQA
model is excepted to have larger values of SROCC and PLCC,
while a smaller value of RMSE. As recommended by the
report from Video Quality Expert Group (VQEG) [64], the
relationship between the subjective scores and the objective
scores may not be linear due to the nonlinear quality rating of
observers. Therefore, before calculating PLCC and RMSE, a
nonlinear logistic regression process is applied

f(x) = β1

[
1

2
− 1

1 + eβ2(x−β3)

]
+ β4x+ β5, (18)

where β1, β2, β3, β4, and β5 are the parameters to be fitted.

B. Implementation Details

To implement MSDDL, an image gallery set containing
pristine images and their associated distorted images should
be prepared in advance. We collect 12 pristine images which
have different scenes from the images appeared in existing
IQA databases, as shown in Fig. 3. Based on these pristine
images, the distorted images are generated by simulating four
distortion types (i.e., JP2K, JPEG, GB, and WN) with five
quality degradation levels. As a result, 240 distorted images
with different distortions and qualities are obtained. To learn
MSDDs, a total number of 1, 000 non-overlapped patches
having rich structures (with the largest variance values) are
sampled from each distorted image to form Y. The rational is
that, image patches with larger variance values are considered
to have richer structure information which is responsible the
most for informative dictionary learning. For the selection of
FSIM metric in our method, we experimentally tried several
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(a) Collected pristine images (b) Pristine images in LIVE (c) Pristine images in CSIQ (d) Pristine images in TID2013

Fig. 3. Pristine images. From left to right: Collected pristine images, pristine images in LIVE, CSIQ, and TID2013, respectively.

(a): SROCC vs. T (b): SROCC vs. M (c): SROCC vs. N

Fig. 4. Performance results in terms of SROCC vs. (a) the sparsity level T ; (b) dictionary size M ; (c) the number of stages N .

leading FR-IQA metrics (i.e., SSIM [9], GMSD [16], FSIM
[13], and VSI [15]). Similar to FSIM, VSI also only provide
a single quality score for each image after pooling, then the
pixel-unit local quality map based on VSI is estimated by
a similar formulation defined in Eq. (6) (just replace the
similarity measures in Eq. (6) by the relevant ones in VSI).
In contrast to FSIM and VSI, SSIM and GMSD are able to
provide local quality maps in its original form, then they can
be applied to construct the local quality map seamlessly. By
experiments, we find that 1) the FSIM metric is suitable in
our problem, and 2) the influence of different leading FR-IQA
metrics is not obvious.

In our method, several parameters are involved: 1) Bs:
patch size; 2) K: number of grouped subsets; 2) T : sparsity
level; 3) M : dictionary size; 4) N : number of stages. In
our experiments, the patch size Bs is set to 7, which is the
same with CORNIA and HOSA. The number of subsets K
is selected from a set of candidates KΩ = {5, 10, 15, 20}.
Among these candidates, the one associated with the highest
SROCC value on LIVE is selected and then used for all the
databases. Although this final K = 10 may not be optimal
for all the databases (the optimal K can be quite different for
each database actually), it still leads to promising performance
for all cases, as confirmed by all the experimental results.
To investigate the influence of sparsity level T , dictionary
size M , and number of stages N on the performance, we
assign T = {1, 3, 5, 10, 15}, M = {100, 200, 400, 800, 1200},
N = {1, 2, 3, 4, 5} and compute the SROCC values over
all five databases. The results are shown in Fig. 4. For all
databases, we set T = 5, M = 800, N = 4, which can achieve
satisfactory performances for most cases. Finally, the overall
feature dimension of our method is 3.2K in total which is
much smaller than 10K used in CBIQ, 20K used in CORNIA

and 14.7K used in HOSA. Such feature dimension reduction
is meaningful for the applications of embedding systems and
mobile devices where the memory resources are limited. It
is reminded that, although the parameters are not determined
on a separate training set, they are also not optimized for
each database. By observing the performance variations to
different parameter choices, we simply choose the parameters
that generally work well for most cases. As the selected
parameters can achieve satisfied performance across all the five
databases, it is believed that such parameters can be directly
used for other testing samples.

C. Performance on Individual Database

To evaluate the performance of the BIQA algorithms, we
test them on each individual database separately. Following
the evaluation protocols in previous works, we divide each
database into training and testing subsets. To ensure that there
are non-overlapping contents used for training and testing,
distorted images associated with 80% of the reference images
in each database are selected for training, and the rest 20%
distorted images are used for testing. Such random training-
testing split is repeated 1, 000 times and the median perfor-
mance is reported in Table III.

From Table III, we have the following observations.
First, the results of all methods are worse (some less and

some more) on LIVE MD and SIQAD. Such performance bias
can be explained as follows. For LIVE MD, the challenges can
be summarized from three aspects: the influence of individual
distortions on image quality, the interaction between these
distortions, and the joint effects of theses distortions on the
overall quality. All these problems make the quality evaluation
of images degraded with mixed distortions challenging. For
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TABLE III
OVERALL PERFORMANCE OF DIFFERENT BIQA MODELS. TEXTS IN BOLD INDICATE THE TOP THREE METHODS.

Database Criteria Handcrafted feature-based methods Codebook feature-based methods
DIIVINE BLIINDS-II BRISQUE GM-LOG NFREM CBIQ CORNIA CORNIA-1.6K HOSA MSDD

LIVE
SROCC 0.9162 0.9302 0.9409 0.9503 0.9376 0.9119 0.9417 0.9174 0.9504 0.9472
PLCC 0.9172 0.9357 0.9450 0.9539 0.9421 0.9278 0.9434 0.9192 0.9527 0.9488
RMSE 10.8103 9.6189 8.9048 8.1723 9.1012 10.2683 9.0204 10.6945 8.2858 8.7719

CSIQ
SROCC 0.8760 0.9140 0.9099 0.9228 0.9287 0.9048 0.8930 0.8817 0.9298 0.9105
PLCC 0.8983 0.9323 0.9278 0.9408 0.9518 0.8922 0.9175 0.9024 0.9480 0.9227
RMSE 0.1220 0.1010 0.1044 0.0950 0.0842 0.1225 0.1123 0.1181 0.0887 0.1080

TID2013
SROCC 0.8753 0.8786 0.8917 0.9282 0.9286 0.8946 0.8998 0.8878 0.9521 0.9324
PLCC 0.8859 0.9053 0.9176 0.9439 0.9509 0.8837 0.9277 0.9175 0.9592 0.9416
RMSE 0.6474 0.5921 0.5534 0.4629 0.4363 0.6491 0.5239 0.5533 0.3941 0.4687

LIVE-MD
SROCC 0.8738 0.8872 0.8972 0.8237 0.8989 0.8876 0.9007 0.8916 0.9019 0.9122
PLCC 0.8936 0.9028 0.9207 0.8632 0.9190 0.8992 0.9150 0.9038 0.9262 0.9325
RMSE 8.3843 8.1330 7.3168 9.4198 7.4132 8.1455 7.6737 8.1295 6.9739 6.9476

SIQAD
SROCC 0.7279 0.7561 0.7715 0.7989 0.7983 0.8314 0.8352 0.8238 0.8484 0.8635
PLCC 0.7768 0.7982 0.8210 0.8330 0.8259 0.8492 0.8533 0.8365 0.8636 0.8792
RMSE 8.6903 8.3688 7.9383 7.7005 7.8615 7.2571 7.1989 7.6912 6.9594 6.6733

SIQAD, the main challenge lies in that images are of computer
graphic or document contents, not resulting from a natural
source. Therefore, handcrafted NSS feature-based methods
may lose their power in evaluating the quality of screen content
images. Given that the influences of the textual contents and
the one of the pictorial contents on the overall quality can be
quite different, such quality evaluation problem especially a
blind one is also challenging.

Second, the proposed MSDD method ranks the top three
for most databases (except for the CSIQ) and ranks top for
six times in total followed by the HOSA for five times.
This demonstrates that MSDD has fairly good ability to learn
effective yet robust features in characterizing image quality
with diverse visual contents and distortions.

Third, compared to the handcrafted NSS feature-based
methods, e.g., BRISQUE, GM-LOG, and NFREM, the
codebook-based BIQA methods show comparable perfor-
mance on LIVE, CSIQ, and TID2013 which only con-
tain singly-distorted natural images, while for LIVEMD and
SIQAD, especially SIQAD, the handcrafted NSS feature-based
methods are significantly inferior to all the codebook-based
ones. This indicates that traditional handcrafted NSS features
cannot well reflect the quality information contained in dis-
torted screen content images which contain not only natural
pictorial contents but also textual and graphical contents.
However, the codebook-based methods can provide unique
benefits in capturing the specific information in screen content
images.

Forth, compared to the previous codebook-based BIQA
methods, i.e., CBIQ, CORNIA, and HOSA, MSDD delivers
competitive performance on LIVE, CSIQ, and TID2013, while
performs better on LIVE-MD and SIQAD. It is encouraging
because MSDD only need to extract a 3.2K-dimensional
feature vector to represent an image while previous codebook-
based methods extract 10K-dimensional feature vector at least.
Although CORNIA-1.6K also relies on 3.2K-dimensional fea-
tures, it performs much worse than our method across all
databases. We believe this phenomenon is mainly attributed
to the large encoding error with a single small-size codebook
which may inevitably interfere with the accurate evaluation

of quality degradation. Instead, the proposed method encodes
each local patch with respect to multiple cascade discrimi-
native dictionaries, yielding more compact and discriminative
quality-aware features.

D. Statistical Significance Test

To understand whether the advantages of our method over
the competing methods are statistically significant, we further
evaluate the statistical significance using the Wilcoxon rank-
sum test [65] which measures the equivalence of the median
values of two independent samples. We conduct the Wilcoxon
rank-sum test at a significance level of 5% using the 1000
SROCC values of all pairs of BIQA methods. The null
hypothesis of this analysis assumes that the SROCC values of
the methods in comparison are drawn from populations with
equal means. The tables in Fig. 5 provides the results over
five databases. In the tables, a symbol of ‘1’ indicates that
the row model is statistically superior to the column model,
a symbol of ‘-1’ indicates that the row model is statistically
inferior, and a symbol of ‘0’ indicates that the row model is
statistically equivalent to the compared model in that column.

From the tables, we can see that the proposed method
performs statistically better than all the other competing
methods on both LIVE-MD and SIQAD. Furthermore, our
method is on par with BRISQUE, GM-LOG, CORNIA, and
HOSA, while significantly superior to the rest competing
methods on LIVE. As for CSIQ, the proposed method is
statistically equivalent to BLIINDS-II, BRISQUE, and CBIQ,
however, significantly worse than GM-LOG, NFREM, and
HOSA. For TID2013, only HOSA is significantly better than
the proposed method. Overall speaking, the proposed method
is comparable with HOSA when considering the significance
test results over all these databases (symbol ‘1’ occurs 31
times for the proposed method and 36 times for HOSA on
all five databases). However, given the fact that much lower
dimension features are required in our method as compared
to HOSA (3.2K vs. 14.7K), the reported performance is quite
competitive in terms of either efficacy or efficiency. Note that,
when the same dimension features are used, our method is
significantly better on all databases, as demonstrated by the
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Fig. 5. Statistical significance test results of competing BIQA methods. In the Table, ”1” indicates the row model is statistically better than the column
model; ”-1” indicates the row model is statistically worse than the column model; ”0” indicates the row and column models are statistically equivalent.

TABLE IV
PERFORMANCE (SROCC) OF DIFFERENT MODELS ON INDIVIDUAL DISTORTION TYPES. TEXTS IN BOLD INDICATE THE TOP THREE METHODS.

Database Distortion DIIVINE BLIINDS-II BRISQUE GM-LOG NFREM CBIQ CORNIA CORNIA-1.6K HOSA MSDD

LIVE

JP2K 0.9164 0.9301 0.9169 0.9262 0.9368 0.9033 0.9211 0.8966 0.9331 0.9328
JPEG 0.9028 0.9505 0.9650 0.9631 0.9641 0.9418 0.9382 0.9074 0.9549 0.9311
WN 0.9813 0.9471 0.9800 0.9831 0.9838 0.9321 0.9568 0.9362 0.9729 0.9572
GB 0.9299 0.9146 0.9519 0.9293 0.9091 0.9345 0.9573 0.9408 0.9524 0.9485
FF 0.8627 0.8741 0.8754 0.8994 0.8502 0.8558 0.9057 0.8843 0.9003 0.8922

CSIQ

JP2K 0.8662 0.9052 0.8952 0.9177 0.9167 0.9008 0.9055 0.8819 0.9244 0.9033
JPEG 0.8802 0.9254 0.9248 0.9161 0.9266 0.9063 0.8888 0.8672 0.9254 0.9149
WN 0.9034 0.9368 0.9379 0.9471 0.9338 0.9209 0.8080 0.7848 0.9192 0.8857
GB 0.8754 0.9164 0.9123 0.9132 0.9240 0.8742 0.9066 0.8993 0.9266 0.9237

TID2013

JP2K 0.8662 0.9016 0.9011 0.9280 0.9375 0.8716 0.9123 0.8945 0.9453 0.9291
JPEG 0.8685 0.8546 0.8723 0.9084 0.8959 0.9050 0.8654 0.8471 0.9283 0.9052
WN 0.8845 0.8315 0.8568 0.9385 0.9391 0.8948 0.7546 0.7368 0.9215 0.9166
GB 0.9369 0.8731 0.9201 0.9192 0.9282 0.9022 0.9234 0.9115 0.9538 0.9377

LIVE-MD GB+JPEG 0.8773 0.8993 0.9029 0.8237 0.9188 0.8914 0.9006 0.8836 0.9287 0.9218
GB+WN 0.8819 0.8898 0.9022 0.8632 0.8874 0.8837 0.8991 0.8852 0.8918 0.9011

SIQAD

JP2K 0.4527 0.6234 0.4466 0.6716 0.6635 0.7236 0.7348 0.7259 0.7701 0.7945
JPEG 0.3519 0.3755 0.5690 0.4442 0.4369 0.7412 0.7682 0.7527 0.7523 0.7864
WN 0.8528 0.8708 0.8621 0.8889 0.8703 0.8353 0.8404 0.8384 0.8530 0.8812
GB 0.8990 0.8626 0.8963 0.8768 0.8758 0.8691 0.8736 0.8675 0.8840 0.8941

Hit count 3 3 5 8 9 0 5 1 12 11

significance test results between the proposed method and
CORNIA-1.6K (symbol ‘1’ only occurs 9 times for CORNIA-
1.6K over all five databases).

E. Performance on Individual Distortion Type

Besides the overall performances on entire databases, we
are also interested to know the performances on individual
distortion types. For each individual distortion type, we test
the images that belong to each distortion type in the testing set
with the model trained on 80% of images including all types
of distortions in that database. The results are presented in
Table IV and the best three results are highlighted in boldface.
For brevity, we only report SROCC results without the loss of
generality. In addition, we show the hit count (i.e., the number
of times ranked in the top three for each distortion type) of
the performance for each competing method. It is seen that
HOSA has the highest hit count (12 times), followed by the
proposed method (11 times) and NFREM (9 times). Although
comparable, our method depends on much lower dimensional
features than HOSA and performs more stable than NFREM
and GM-LOG over all these databases especially on LIVE-MD
and SIQAD databases.

To further validate the general capacity, we also conduct-
ed the 1000 train-test experiments for all competing BIQA
models on the entire TID2013 database. The distortion types
in TID2013 database include: #01 additive white Gaussian

noise, #02 additive noise in color components, #03 additive
Gaussian spatially correlated noise, #04 masked noise, #05
high-frequency noise, #06 impulse noise, #07 quantization
noise, #08 Gaussian blur, #09 image denoising, #10 JPEG
compression, #11 JPEG2000 compression, #12 JPEG trans-
mission errors, #13 JPEG2000 transmission errors, #14 non
eccentricity pattern noise, #15 local block-wise distortion of
different intensity, #16 mean shift, #17 contrast change, #18
change of color saturation, #19 multiplicative Gaussian noise,
#20 comfort noise, #21 lossy compression of noisy images,
#22 image color quantization with dither, #23 chromatic
aberrations and #24 sparse sampling and reconstruction. For
individual distortion type, we tested the images belonging to
each distortion in the testing set with the model trained on
80% of images including all types of distortions in the entire
TID2013 database. The results are summarized in Table V and
the best three results are highlighted in boldface. For brevity,
we only present the SROCC results. Similar conclusions can
be obtained for PLCC and RMSE.

From Table V, the following observations can be found.
First, MSDD performs continuously better than both CORNIA
and CORNIA-1.6K which further validates its effectiveness.
Second, MSDD is slightly worse than HOSA on the entire
TID2013 database, while for each individual distortion type,
MSDD performs worse than HOSA 16 times and better 7
times. Nevertheless, when considering the fact that much less
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TABLE V
PERFORMANCE EVALUATION (SROCC) ON THE ENTIRE TID2013 DATABASE. EACH NUMBER CORRESPONDS TO A SPECIFIC DISTORTION TYPE.

Method #01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12 #13
DIIVINE 0.5831 0.3240 0.6005 0.3214 0.7649 0.6225 0.5986 0.8337 0.7229 0.6973 0.8228 0.4316 0.5232

BLIINDS-II 0.7142 0.7282 0.8245 0.3577 0.8523 0.6641 0.7799 0.8523 0.7538 0.8077 0.8615 0.2512 0.7550
BRISQUE 0.6300 0.4235 0.7265 0.3210 0.7754 0.6692 0.5915 0.8446 0.5533 0.7417 0.7988 0.3012 0.6715
GM-LOG 0.7808 0.5881 0.8177 0.5449 0.8892 0.6593 0.8000 0.8485 0.7531 0.7992 0.8431 0.3985 0.7473
NFREM 0.8508 0.5201 0.8458 0.5209 0.8936 0.8573 0.7848 0.8876 0.7412 0.7972 0.9195 0.3807 0.7181
CORNIA 0.3408 -0.1962 0.6892 0.1835 0.6071 -0.0138 0.6731 0.8957 0.7866 0.7854 0.8831 0.5515 0.5469

CORNIA-1.6K 0.5591 0.1343 0.5372 0.2269 0.6651 0.1877 0.6385 0.8716 0.7695 0.6872 0.8527 0.4683 0.5069
HOSA 0.8529 0.6250 0.7820 0.3677 0.9046 0.7746 0.8101 0.8924 0.8702 0.8931 0.9323 0.7472 0.7012

MSDD (Pro.) 0.6519 0.4870 0.7885 0.3718 0.7772 0.6855 0.8023 0.9022 0.8236 0.8446 0.9207 0.6059 0.6431
Method #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 All Hit count

DIIVINE 0.3114 0.1998 0.2754 0.0315 0.2008 0.6012 0.2102 0.4887 0.6332 0.7616 0.8389 0.5296 3
BLIINDS-II 0.0812 0.3713 0.1585 -0.0823 0.1092 0.6987 0.2223 0.4505 0.8146 0.5676 0.8562 0.5504 5
BRISQUE 0.1751 0.1835 0.1545 0.1246 0.0315 0.5596 0.2823 0.6803 0.8038 0.7145 0.7995 0.5615 1
GM-LOG 0.2054 0.2419 0.0758 0.2946 -0.1831 0.7246 0.2502 0.6419 0.8565 0.6582 0.9031 0.6750 13
NFREM 0.1758 0.0812 0.2380 0.0559 -0.0287 0.7621 0.2064 0.4007 0.8482 0.6838 0.8781 0.6522 10
CORNIA 0.1605 0.0962 0.0077 0.4233 -0.0554 0.2593 0.6064 0.5546 0.5919 0.7592 0.9023 0.6509 6

CORNIA-1.6K 0.1721 0.0815 0.0248 0.4056 0.0612 0.4281 0.5482 0.5966 0.5875 0.7321 0.8819 0.5867 2
HOSA 0.1989 0.3273 0.2327 0.2938 0.1185 0.7819 0.5315 0.8354 0.8554 0.8014 0.9052 0.7280 18

MSDD (Pro.) 0.2074 0.1452 0.2086 0.4235 0.1209 0.3864 0.6237 0.6018 0.6775 0.7810 0.9045 0.7033 15

features are involved in MSDD as compared to HOSA, such
performance is also encouraging. It is reminded that the feature
dimensionality in HOSA is difficult to be reduced as even a
100-codeword codebook is used, a total number of 14,700-
dim feature vector will be produced. Third, most methods
deliver relatively satisfied performance on evaluating the noise-
related, such as #1, #3, #5, #6, #7, #9, and compression-
related distortions, such as #10, #11, #24, while failing to
evaluate several color- and contrast-related distortions, such
as #2, #14, #15, #16, #17, #18, #22, and #23 in
TID2013. This is very challenging due to these reasons: 1)
#2, #18, #22, and #23 is mainly about color saturation
thus most BIQA methods which based on luminance image
processing fail to accurately estimate the resultant quality; 2)
#14 and #15 consist of localized distortion patterns which
have limited influence on global image feature; 3) #16 and
#17 are correlated to image luminance change which is
generally overlooked since current algorithms always work on
normalized images. All these failed cases could lead us to
develop more robust and universal BIQA models in the future
by considering more comprehensive quality-aware features.

F. Dependency on Training Set Size

Each database is divided into two non-overlapping subsets
for performance evaluation, i.e., 80% samples for training and
the remaining 20% samples for testing. To investigate the
dependency of model performance to different training set
sizes, we measure the mean SROCC and PLCC values over
1000 random train-test splits as a function of the percentage of
training set sizes, ranging from 10% to 90% with an increment
of 10%. The results are shown in Fig. 6. It is notable that
the proposed method does not deteriorate substantially along
with the reduction of the training set size. Specifically, the
performance reduction in terms of SROCC (PLCC) caused by
decreasing the percentage of training set from 90% to 30%
are less than 0.03 (0.04) for all five databases, indicating the
robustness against different training set sizes.

Fig. 6. Performance results for different percentages of training set size.

G. Computational Complexity

Computational complexity is another important indicator to
evaluate the performance of a BIQA method because a good
model is expected to provide both satisfactory efficacy and
efficiency so that it can be deployed to real-world applica-
tions. The computational complexity of the competing BIQA
methods is analyzed and presented in Table VI. In addition,
the running time consumed by each model for estimating
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TABLE VI
COMPUTATIONAL COMPLEXITY AND AVERAGE RUNNING TIME COMPARISON (IN SECONDS)

Method Computational complexity Running time (s)
GM-LOG O(N(h+ k)), h: filter size, k: probability matrix size 0.0813
BRISQUE O(Nd2), d: window size 0.1024

HOSA O(Nd2K), d: window size, K: codebook size 0.4269
CORNIA-1.6K O(Nd2K), d: window size, K: codebook size 0.7848
MSDD (Pro.) O(Nd2K), d: window size, K: codebook size 1.6627

CORNIA O(Nd2K), d: window size, K: codebook size 3.2142
DIIVINE O(Nlog(N) +m2 +N + 392b), m: neighborhood size in DNT, b: bin number of 2D histogram 19.5607
NFREM O(Nd2log(N)), d: window size of AR model 58.6212

BLIINDS-II O((N/d2)log(N/d2)), d: window size 66.3518

the quality of one 720 × 480 color image (taken from LIVE
database) is also provided in Table VI. The experiments are
performed on a personal computer with Intel(R) Core (TM)
i5-6200 CPU @ 2.4 GHz and an 8GB RAM. The software
platform is MATLAB R2014b. It is observed that the proposed
method has a moderate time complexity. As compared to
CORNIA, our method is faster and more memory-saving
while without any performance loss. However, as compared to
HOSA which extracts features on a 100-codeword dictionary
and finally generates 14.7K-dim feature vectors, our method is
slightly slower but still more memory-saving (3.2K-dim versus
14.7K-dim feature vectors). Such feature dimension reduction
is rather important in the application scenarios of embed-
ding systems or mobile devices whose memory resources are
usually limited. Overall, by considering the balance between
efficacy and efficiency, the performance of the method we
proposed is promising and has the potential to be used to
evaluate the quality of both natural images (including singly-
distorted and multiply-distorted) and screen content images in
practical applications.

V. CONCLUSION

This paper has presented a novel codebook-based blind
image quality assessment (BIQA) method by optimizing multi-
stage discriminative dictionaries (MSDDs). The unique bene-
fits provided by the optimized MSDDs for multi-stage feature
encoding (MSFE) in the context of BIQA mainly lie in the
following two aspects. First, by incorporating an additional
“quality-discriminative regularization” term into the traditional
reconstructive error term, a unified objective function for
discriminative dictionary learning is formulated. Then, this
unified objective function is effectively solved by the label
consistent K-SVD (LC-KSVD) algorithm, yielding a discrim-
inative yet reconstructive dictionary. The discriminability of
the learned dictionary can effectively reduce the semantic gap
between the learned dictionary and the BIQA task we con-
sidered. Second, by encoding the reconstruction residuals in a
stage-by-stage manner, the complementary benefits provided
by the residual information for image quality prediction are
also exploited and utilized. Finally, with the process of MSFE
over the learned MSDDs, more discriminative feature codes
can be obtained for robust quality evaluation with respect
to a much smaller-size dictionary. Experimental results on
several databases have demonstrated the effectiveness of the
proposed method in evaluating both natural images (degraded

with single distortion and multiple distortions) and screen
content images. Although our method is most suitable to
evaluate those common distortion types, it is still unable to
offer satisfactory results on some challenge cases such as
luminance change and color/contrast distortions. In the future
work, we hope to seek for more complicated and effective
supervised dictionary learning algorithms to simultaneously
take luminance, contrast, and color components into account
for blind image quality analysis.
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